Filling radii of finitely presented groups

نویسندگان

  • S. M. Gersten
  • T. R. Riley
چکیده

The filling radius function R of Gromov measures the minimal radii of van Kampen diagrams filling edge-circuits w in the Cayley 2complex of a finite presentation P. It is known that the Dehn function can be bounded above by a double exponential in R and the length of the loop, and it is an open question whether a single exponential bound suffices. We define the upper filling radius R(w) of w to be the maximal radius of minimal area fillings of w and let R be the corresponding filling function, so R(n) is the maximum of R(w) over all edge-circuits w of length at most n. We show that the Dehn function is bounded above by a single exponential in R and the length of the loop. We give an example of a finite presentation P where R is linearly bounded but R grows exponentially. 1991 Mathematics Subject Classification: 20F05, 20F32, 57M07

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tame filling invariants for groups

A new pair of asymptotic invariants for finitely presented groups, called intrinsic and extrinsic tame filling functions, are introduced. These filling functions are quasi-isometry invariants that strengthen the notions of intrinsic and extrinsic diameter functions for finitely presented groups. We show that the existence of a (finite-valued) tame filling function implies that the group is tame...

متن کامل

Filling Length in Finitely Presentable Groups

Filling length measures the length of the contracting closed loops in a null-homotopy. The filling length function of Gromov for a finitely presented group measures the filling length as a function of length of edge-loops in the Cayley 2-complex. We give a bound on the filling length function in terms of the log of an isoperimetric function multiplied by a (simultaneously realisable) isodiametr...

متن کامل

Stackable Groups, Tame Filling Invariants, and Algorithmic Properties of Groups

We introduce a combinatorial property for finitely generated groups called stackable that implies the existence of an inductive procedure for constructing van Kampen diagrams with respect to a canonical finite presentation. We also define algorithmically stackable groups, for which this procedure is an effective algorithm. This property gives a common model for algorithms arising from both rewr...

متن کامل

Pdmi Preprint — 01/1999 Green Functions on Trees with Finitely Many Cone Types

We prove that the Green function of a nearest neighbour random walk on a tree with finitely many cone types is algebraic. Analysis of this function for a special class of trees associated to groups leads to new estimates of spectral radii of groups with finitely many cone types.

متن کامل

Free and Fragmenting Filling Length

A. The filling length of an edge-circuit η in the Cayley 2-complex of a finitely presented group is the least integer L such that there is a combinatorial null-homotopy of η down to a basepoint through loops of length at most L. We introduce similar notions in which the null-homotopy is not required to fix a basepoint, and in which the contracting loop is allowed to bifurcate. We exhibit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001